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Abstract. This paper is devoted to the thermally activated dynamics of capillary condensation.
We present a simple model which enables us to identify the critical nucleus involved in the transition
mechanism. This simple model is then applied to calculate the nucleation barrier from which we
can obtain information on the nucleation time. We present a simple estimation of the nucleation
barrier in slab geometry both in the two-dimensional case and in the three-dimensional case. We
extend the model to the case of rough surfaces which is closer to the experimental case and allows
comparison with experimental data.

1. Introduction

When two surfaces are brought together in a condensable vapour near saturation, a first-order
phase transition from gas to liquid occurs at small gap width provided that the liquid wets the
solid substrate, i.e. has a contact angle smaller than 90◦. Macroscopic considerations predict
that the condensation occurs for distances between the solid surfaces H less than a critical
distance Hc obeying

�ρ �µ � 2(γSV − γSL)/Hc (1)

where �ρ = ρl − ρg is the difference between the bulk densities of the liquid and the gas and
�µ = µsat −µ is the (positive) undersaturation in chemical potential, with µsat the chemical
potential at bulk coexistence [1]. If the gas is assumed to be close to ideal, then

�µ ≈ kBT ln(Psat /Pvap) = kBT ln(1/RH)

where RH is the so-called relative humidity. At standard ambient conditions, for water
(γLV = 72 mJ m−2, ρL ≈ 3 × 1028 m−3, RH = 40%), we obtain Hc ≈ 2 nm. Capillary
condensation is usually invoked to interpret adsorption isotherms of gases in mesoporous
media [2]. This transition is now well documented, both from the experimental [3–5] and
theoretical points of view [6, 7].

On the other hand, the problem of the dynamics of the transition has received very
little attention. Experimentally, only indirect information on the dynamics is available in the
literature. Experimental studies of capillary condensation using the surface force apparatus
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(SFA) technique systematically show an important hysteresis in the interaction force between
two substrates when the separation of the surfaces is first decreased and then increased. This
large hysteresis indicates the strong metastability of the gas phase when H < Hc, which
persists over macroscopic times. Recent experiments with a SFA have studied the growth of the
liquid meniscus after the nucleation [8], but no attention has been given to the nucleation time.
Experiments measuring the cohesion inside divided materials may provide indirect information
on the dynamics of the transition too [9,11,12]. Theoretically, lattice-gas simulations showed
that the (topologically equivalent) drying transition occurs via the creation of ‘tubes’ connecting
the two wetting films [13].

Going beyond these results, a theory proposing a mechanism for the dynamics of the
capillary condensation is still needed.

In the following, we propose to calculate the shape and the corresponding energy of the
critical nucleus. First, a simplified model in the slab geometry based on a macroscopic approach
will be considered. The macroscopic description is expected to give only a qualitative picture
of the mechanism but has the advantages of rendering calculations tractable and of capturing
the essential features of the physics involved. We shall moreover focus on the problem of
the estimation of the energy barrier to nucleation of a liquid bridge. Secondly, we show how
the natural roughness of the surfaces on a nanometric scale can be taken into account in the
dynamics of the transition. Applications to the adsorption kinetics in a granular medium will
be discussed.

2. The slab geometry

In a first step, we restrict our attention to a system confined between two perfectly smooth and
flat solid surfaces, and in contact with a reservoir of temperature T and chemical potential µ.

Let us consider the situation in which planar liquid films of varying thickness e (e < H/2)
develop on both solid surfaces. Following Evans et al [6,14], the grand potential of the system
may be written as

� = −pV VV − pLVL + 2γSLA + 2γLVA (2)

where VV (VL) is the volume of the gas (liquid) phase and A is the surface area. Using
VL = 2Ae, VV = A(H − 2e) and pV − pL � �ρ �µ, one gets

�ω(e) ≡ 1

A
(� − �(e = 0)) = �ρ �µ 2e. (3)

We note that this description is strictly applicable only to slits with smooth walls, where the
fluid–substrate interaction potential depends only on the relative position a fluid molecule
with respect to the wall. The discrete nature of the substrate is thus neglected, as was done
e.g. by Evans et al [14] (see however reference [10]). Note that in the complete-wetting
situation, �(e = 0) can be identified with �V , the grand potential of the system filled with
the gas phase only. The situation with e = H/2 corresponds to the opposite case where
the two liquid films merge to fill the pore. The grand potential thus exhibits a discontinuity
at e = H/2 corresponding to the disappearance of the two liquid–vapour interfaces, and
its value is reduced to 2γLVA. When e = H/2, expression (3) must then be replaced by
�ω(e = H/2) = −�ρ �µ (Hc−H), whereHc is the critical distance defined in equation (1).
One may note that the minimum of the grand potential corresponds to a complete filling of
the pore by the liquid phase when H < Hc, as expected. If we now allow deformation of the
interfaces, the corresponding cost has to be added to the grand potential. We assume also a
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mirror symmetry of the interfaces, so one finds in this case

��tot = γLV �ALV +
∫

dS �ω(e) (4)

with��tot = �({e})−�V where�ALV = ALV −A is the excessL−V area. The integration
in the last term runs over the solid surface.

2.1. The 2D case

Let us consider first the 2D case. Within the small-slope assumption, i.e. |de/dx| � 1,
�ALV � ∫

dx γLV |∇e|2, extremization of the grand potential leads to the following Euler–
Lagrange equation for e(x), where x denotes the lateral coordinate:

2γLV
d2e

dx2
− d �ω(e)

de
= 0. (5)

We look for solutions satisfying e = 0 and de/dx = 0 at infinity. We can choose
e(x = 0) = H/2 to fix the origin. The complete solution, depicted in figure 1(a), can be
obtained in the form of parabolic branches with a spatial extent xc = √

HRc whereRc = Hc/2.
Let us note that the cusp in the solution for x = 0 stems from the discontinuity of �ω for
e = H/2 resulting from the assumption of an infinitesimally narrow liquid–vapour interface.
Condensation thus occurs through the excitation of short-wavelength fluctuations, in agreement
with the simulation results for the drying transition [13]. The corresponding energy of the
nucleus (per unit length in the perpendicular direction) can be calculated by integration of
equation (4):

��† = 4

3
(�µ�ρ γLV )

1/2H 3/2. (6)

H H

a b

Rc

2xc 2R*

Figure 1. (a) A picture of the critical nucleus for capillary condensation in two dimensions and the
perfect-wetting case (θ = 0). The radius of curvature of the meniscus is equal to Rc = Hc/2; this
is only approximately obeyed within the small-slope assumption. See the text for details. (b) A
picture of the critical nucleus in three dimensions and the perfect-wetting case. See the text for
details.

It is easy to check that ��† corresponds to a saddle point of the grand potential. It is
greater than the free energies of both the gas and liquid phases. We just point out that the
parabolic solution obtained above is the small-slope approximation to the circle with radius of
curvature Rc.

We also mention that the prediction for��† in equation (6) is in agreement with numerical
simulation results, obtained using a Landau–Ginzburg model for the grand potential of the
system together with a non-conserved Langevin dynamics. Full details of these simulations
are given elsewhere [15].
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These results can be generalized to the partial-wetting case. The only difference is
that the contact angle θ on the surfaces is now non-vanishing and obeys Young’s law,
γSV − γSL = γLV cos θ . To leading order in H/Hc, one gets [15]

��† � 2γLV sin θ H. (7)

2.2. The 3D case

The previous approach can now be directly generalized to the 3D case. In fact, maximization
of the grand potential, equation (4), leads to two mechanical equilibrium conditions: the usual
Laplace equation, relating the local curvature κ to the pressure drop γLV κ = �p � �µ�ρ;
and Young’s law, which fixes the contact angle of the meniscus on the solid substrate according
to γLV cos θ = γSV − γSL (i.e. θ = 0 in the perfect-wetting case). These non-linear equations
cannot be solved analytically in 3D, but one can easily see that the corresponding critical
nucleus takes the form of a liquid bridge of finite lateral extent R∗, connecting the two solid
surfaces (see figure 1(b)). This finite extent results physically from the balance between a
‘surface’ contribution

��1 ≈ (�ρ �µH − 2(γSV − γSL))πR
2

which drives capillary condensation, and a linear contribution ��2 ≈ 2πγLVRH specific to
the 3D case which tends to close the bridge. Maximization of the free energy gives a finite
extent R∗, yielding for the free-energy barrier

��† ≈ πγ 2
LV

2(γSV − γSL)

H 2Hc

Hc − H
. (8)

Full details for the 3D case will be given in a forthcoming paper [16].

3. The rough case

Although a lot can be learned from the perfectly flat slab geometry, the latter is certainly too
idealized to account for the kinetics of adsorption in ‘real’ experimental systems. Very slow
logarithmic changes measured in various static properties of granular media in the presence of
humidity (see figure 3 later and the remainder of the text) [9,11] have been related to the kinetics
of the capillary condensation. As we shall show here, these logarithmic time dependences
may be understood by taking into account the influence of roughness on the dynamics of
capillary condensation. Let us consider a simple model consisting of two surfaces facing
each other and rough on the nanometric scale, as depicted in figure 2(a). As emphasized in the
introduction, capillary condensation typically occurs in pores of nanometric size. We thus have
to consider the roughness of the surfaces at the nanometre level. Here again we shall stay with

a b

Hc Hc

vd

Figure 2. (a) A representation of two typical rough surfaces. Note that we consider the roughness
at the nanometric scale. (b) A schematic representation of an asperity. vd is the excess volume of
the defect and ad the area of the defect.
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a macroscopic description, and focus on a qualitative picture of the influence of roughness on
the transition mechanism. Without loss of generality, one may consider one of the walls to be
perfectly flat. When roughness is present, there is a broad range of gaps between the surfaces.
In particular, there are regions where the two surfaces are in close contact. In such regions,
condensation should take place on a very short timescale. Thus at ‘early times’, one has to
consider a set of wetted islands, which we shall consider as independent. Once these islands
have formed, they should grow up to a point where the distance between the surfaces is equal
to Hc, with the result that a meniscus of radius Rc = Hc/2 cos θ forms at the liquid–vapour
interface, allowing mechanical equilibrium.

When this happens however, the wetted area has to overcome unfavourable regions where
the distance between the two surfaces is larger then Hc. Let us consider a specific jump over
such a ‘defect’, as idealized in figure 2(b). We denote the ‘averaged’ gap inside the defect
(ed > Hc) as ed and its area as ad . The free-energy cost of the liquid bridge to overcoming
this defect is given approximately by

��† � ad(�µ�ρ ed − 2(γSV − γ SL)) ≡ vd �µ�ρ (9)

where vd is the excess volume of the defect, vd = ad (ed −Hc). We can thus estimate the time
taken to overcome the defect as

τ = τ0 exp

{
��†

kBT

}
. (10)

One may expect the defects to exhibit a broad distribution of excess volume vd , so the
activation times τ are accordingly widely distributed. After a time t , only the defects with
activation time τ smaller than t have been overcome. Using equations (9) and (10), these have
an excess volume vd which obeys

vd < vdmax(t) = kBT (�µ�ρ)−1 ln(t/τ0).

The number of filled defects at a time t is then typically N(t) = vdmax(t)/v0 where v0 is the
typical width of the distribution of excess volume of the defects. Now, once a liquid bridge has
bypassed a defect, it locally fills the volume surrounding the nucleating site and the wetted area
increases by some typical (roughness-dependent) amount δA0. The time-dependent wetted
area can thus be written as

Aw(t) � N(t) δA0 = δA0

[�µ/(kBT )]�ρ v0
ln

(
t

τ0

)
. (11)

Similar expressions, with logarithmic dependence on time, can be found for other
quantities, like the time-dependent adsorbed amount, or the adhesion force between rough
surfaces.

These logarithmic dependences have been observed in two kinds of experiment. In the
first one (see figure 3(a), we have measured the evolution of the mass of a sample of glass
beads with a diameter smaller than 50 µm at fixed humidity (RH = 68%) as a function of
the resting time t [17]. The glass beads were first dried at high temperature and then kept at
a fixed humidity controlled by the saturated-salt method described in [11]. The evolution of
the mass fits well with a logarithmic behaviour, as described by equation (11). On the other
hand, the cohesion force resulting from condensation of liquid bridges in a granular medium
has been probed by measuring the maximum angle of stability as a function of resting time.
As shown on figure 3(b), the latter exhibits a slow logarithmic dependence in agreement with
equation (11) [9, 11].
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Figure 3. (a) The evolution of the mass m of a pile of glass beads of radius smaller than 50 µm
as a function of the logarithm of the resting time t in hours. Note that the time is between a few
minutes and two weeks. The temperature is fixed at 31 ± 0.1 ◦C. The relative humidity is fixed at
68% by the salt method described in reference [11]. The straight line is the best linear fit of the
data. (b) The evolution of the tangent of the maximum stability angle θm of a an assembly of glass
beads as a function of the logarithm of the ‘resting’ time t in seconds (divided by the cosine of this
angle, from geometrical arguments). This angle is measured in a cylinder. The full experimental
set-up is described in [11]. •: RH = 3%; : RH = 43%. The straight lines are the best linear
fits of the data.
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